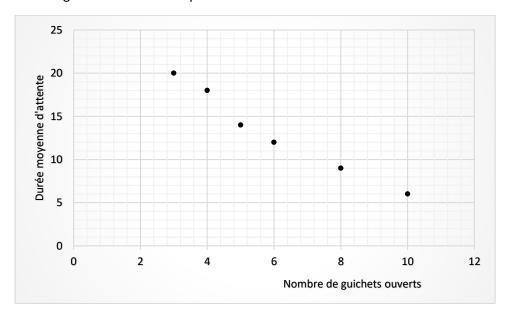
MATHEMATIQUES

1/3

CORRIGE

Exercice 1:

1. Nuage de la série statistique.



2.
$$\bar{x} = \frac{1}{6} \sum_{i=1}^{6} x_i = 6$$
 ;

$$\bar{y} = \frac{1}{6} \sum_{i=1}^{6} y_i \approx 13,17.$$

G(6; 13,17)

3.
$$Cov(x,y) = \frac{1}{6} \sum_{i=1}^{6} x_i y_i - \bar{x}\bar{y} \approx -11{,}35$$

$$V(x) = \frac{1}{6} \sum_{i=1}^{6} x_i^2 - \bar{x}^2 \approx 5,67 \quad ; \quad V(y) = \frac{1}{6} \sum_{i=1}^{6} y_i^2 - \bar{y}^2 \approx 23,38$$

$$r = \frac{cov(x,y)}{\sqrt{v(x)v(y)}} \approx -0.99$$
. Donc il y a une très forte corrélation entre x et y.

4. La droite de régression de y en x a pour équation : y = -2x + 25,7.

5.
$$y = -2 \times 12 + 25,7 = 1,7$$

Donc on peut estimer la durée moyenne d'attente à 2 minutes lorsque 12 guichets sont ouverts.

Exercice 2.

$$A(1;-1;0)$$
; $B(0;1;2)$ et $C(1;2;-2)$.

1. a)
$$\overrightarrow{AB}$$
 (-1; 2; 2); \overrightarrow{AC} (0; 3; -2)

$$\overrightarrow{AB} \wedge \overrightarrow{AC} (-10; -2; -3)$$

2020 T 05 A 01 SERIES : T1-T2

Epreuve du 1er groupe

CORRIGE (suite)

 $\overrightarrow{AB} \wedge \overrightarrow{AC} \neq \overrightarrow{0}$, on en déduit que les points A, B et C ne sont pas alignés.

- b) Equation du plan (P) : -10x 2y 3z + 8 = 0.
- c) Un système d'équations paramétriques de (P) :

$$\begin{cases} x = 1 - k \\ y = -1 + 2k + 3k' ; k \text{ et } k'r\text{\'eels.} \\ z = 2k - 2k \end{cases}$$

- 2. (Q): x-y+z-1=0
- a) \vec{m} (1; -1; 1) est un vecteur normal de (Q).

 $\overrightarrow{AB} \wedge \overrightarrow{AC}$ (-10; -2; -3) et \overrightarrow{m} ne sont pas colinéaires donc (P) et (Q) ne sont pas parallèles.

b) Un système d'équations paramétriques de (D) :

$$\begin{cases} x = \frac{5}{6} - \frac{5}{12} t \\ y = -\frac{1}{6} + \frac{5}{12} t \end{cases}$$
; tréel.

- 3. a. G(-2; 5; 6); H(5; -9; -8).
 - b. L'ensemble (Π) est le plan médiateur du segment [GH].
- 4. L'ensemble (Γ) est la sphère de centre G et de rayon 4.

Problème

$$f(x) = e^{-2x} - 2e^{-x} - 1$$

1.
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} e^{-2x} - 2e^{-x} - 1 = \lim_{x \to -\infty} e^{-x} (e^{-x} - 2 - e^{x}) = +\infty;$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} e^{-2x} - 2e^{-x} - 1 = \lim_{x \to -\infty} \frac{1}{e^{2x}} - \frac{1}{e^x} - 1 = -1.$$

- 2. $\lim_{x \to +\infty} f(x) = -1$,donc la droite d'équation y = -1 est une asymptote horizontale en $+\infty$ $\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{e^{-x}(e^{-x}-2+e^x)}{x} = -\infty$;on a donc une branche parabolique de direction (y'oy)
- 3) Pour tout réel x, f'(x)= $2e^{-x}(-e^{-x}+1)$
- 4) Tableau de variation de f

Pour tout réel x, f'(x) a même signe que $-e^{-x} + 1$

х	-∞		0		+∞
f '(x)		_	0	+	
f	+∞_		→ -2 -		− 1

2020 T 05 A 01 SERIES : T1-T2

Epreuve du 1^{er} groupe

CORRIGE (suite)

5) f est continue et strictement décroissante sur $]-\infty$; 0]; donc f est une bijection de $]-\infty$; 0] sur $f(]-\infty$; 0]) = $[-2; +\infty[$. Or $\frac{1}{2} \in [-2; +\infty[$.

L'équation f(x)=0 admet une unique solution sur $]-\infty;0].$

f est continue et strictement croissante $[0; +\infty[$; donc f est une bijection de $[0; +\infty[$ sur f($[0; +\infty[$) = [-2; -[. Or $\frac{1}{2} \notin [-2; -[$.

Donc l'équation f(x)=0 n'a pas de solution sur $[0; +\infty[$

En conclusion l'équation f(x)=0 admet une unique solution λ .

$$f(-0.9) \approx 0.13$$
 et $f(-0.8) \approx -0.49$; on $f(-0.9) \times f(-0.8) < 0$ donc: $-0.9 < \lambda < -0.8$

6) (
$$\Delta$$
): $y = \frac{1}{2}(x - \ln 2) - \frac{7}{4}$

7) Courbe(voir courbe feuille n°1)

